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Polymorphic metabolic genes that confer enhanced genetic susceptibility to the carcinogenic
effects of certain environmental carcinogens act according to a type 2 interaction between genetic
and environmental risk factors. This type of interaction, for which the gene has no effect on dis-
ease outcome by itself but only modifies the risk associated with exposure, must be treated differ-

ently from other types of gene—environment interaction. We present a method to analyze differ-

ent dose effects often seen in studies involving these genes. We define a low exposure—gene effect,

when a greater degree of gene environment interaction appears at lower doses of exposure (the
interaction follows an inverse dose function), and a converse high exposure—gene effect, when the
interaction increases as a function of dose. Using a standard logistic regression model, we define

a new term, ¢, that can be determined as a function of exposure dose in order to analyze epi-

demiological studies for the type of exposure—gene effect. These models are illustrated by the use

of hypothetical case—control data as well as examples from the literature. Key words: biomarkers,
case—control, epidemiology, logistic regression, polymorphisms. Environ Health Perspect
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Both environmental and genetic factors
have been identified as playing roles in the
development of many chronic diseases
including cancer (1-6). Despite the impor-
tance of environmental exposure in human
cancer, the evidence for some form of
genetic influence on almost all cancer etiol-
ogy is very strong (7,8). Human subjects
show not only a wide variation of genetic
polymorphisms but also an extremely broad
range of phenotypic responses to environ-
mental stimuli. In this scenario, it is impor-
tant to understand the type of interactions
that occur between genetic and environ-
mental factors. With the development of
new biomarkers of genetic cancer suscepti-
bility, new paradigms for the classical terms
of interaction and confounding that are
appropriate for the several different mecha-
nisms of gene—environment interaction are
needed (9).

A number of genes involved in metabo-
lism of carcinogens have been shown to play
a role in cancer risk. In most cases, the puta-
tive biochemical mechanism by which such
genetic factors exert their effects is fairly
straightforward and is related to the actual
dose of the active carcinogenic metabolite
that reaches the genome in the target cell.
By definition, these genes play a role in can-
cer risk only in the context of interaction
with the environment because the substrates
of their gene products are xenobiotic chemi-
cals or their metabolites. This follows the
type 2 form of gene—environment interac-
tion (GEI) as previously described by
Khoury (10,11) and Ottman (12). In this
model of interaction, the cancer is caused by

exposure to an environmental agent. If
there is no exposure, the presence or
absence of the genetic risk factor is irrele-
vant for disease causation. This model of
GEI is the most suitable to explain human
carcinogenesis related to metabolic suscep-
tibility genes such as cytochrome P450 1A1
(CYPIAD), N-acetyltransferase (NAT), glu-
tathione S-transferase (GST), etc.

When the dose of environmental expo-
sure (such as smoking) is analyzed with
respect to genotype of a metabolic suscep-
tibility gene, two apparently divergent pat-
terns are seen. The first instance could be
termed the low exposure—gene (LEG)
effect. This is seen when a decreasing
degree of interaction occurs as a function
of exposure. For example, in a case—ontrol
study, the proportion of cases with the
genetic risk factor (GRF) or polymorphism
would have lower exposure than the pro-
portion of cases without the GRF (13,14).
If the endpoint is not cancer but, for exam-
ple, some marker of exposure such as
adducts, subjects with polymorphisms
should tend to have higher relative levels of
adducts at lower doses of exposure; at high
exposures, no difference in endpoint would
be observed between those with and with-
out the GRF (15). The LEG effect is very
often observed with cases of type 2 GEI
such as cancer susceptibility metabolic
genes and has been discussed in the context
of these genes (16-18).

A high exposure-gene (HEG) effect is
observed when there is an increased degree
of interaction as a function of exposure
dose. In a case—control study, cases with the
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GRF would have higher environmental
exposure doses than cases without the GREF;
in other words, the higher the dose, the
greater the effect of having the GRF on any
other endpoint (such as disease, adducts,
etc.). This high exposure-gene effect has
been seen with GSTMI and lung cancer
(19,20). However, a study of GSTMI and
asbestosis (21) showed a LEG effect, suggest-
ing that this phenomenon is not simply gene
specific, but must be related to the mecha-
nism of action of the gene product leading to
the endpoint being measured. It is important
to understand that, for both types of dose-
related gene—exposure interaction defined
here, having the GRF is not protective, and
persons with the GRF are at either equal or
higher risk than those without the GRF. The
difference between the HEG and LEG
effects is whether the effect of increasing
exposure dose magnifies or diminishes the
relative risk associated with the GRF.

We present a method to identify these
two patterns of dose effects and illustrate
this method with data from a hypothetical
case—control study of a metabolic gene
polymorphism showing type 2 GEI, as well
as with examples from the literature. The
method is also able to distinguish between
these effects and the presence of a true pro-
tective effect of the genetic variant.

Results and Discussion

A common way to describe interactions
between the effects of an environmental
agent and a genetic risk factor is to use both
terms in a multiple regression model and to
include a term that multiplies the GRF by
the environmental agent. The coefficient of
this interactive term then determines
whether interaction is present:

GY)=a+b,E+bGr b EG (1)

where Yis the odds of disease,  is a constant,
E is the environmental exposure, G is the
GREF, and EG is the interaction term. The
coefficients 4, bg and beg are determined by
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regression analysis using an appropriate com-
puter program. If we assume that in the
absence of environmental exposure the pres-
ence of the GRF by itself has no effect on
'disease outcome (which is the definition of
type 2 GEI), then & in the regression model
of Equation 1 is defined as = 0, which leads
to Equation 2:

G(Y)=a+bE+ begEG, )
which can also be written
GY)=a+(b,+ begG)E= a+ 6*E. (3)

This expression corresponds to the assump-
tion that the risk of disease is due to the
action only of the environmental exposure
and the only effect of the GREF is to modify
the coefficient of the exposure term. Now
we can say that

b*=b,+ begG= b,(1+ aG) 4)
where o = beg/be.

In a case—control study, @ is the ratio of
two log odds ratios (ORs).

For example, let us assume that the effect
of GREF such as the isoleucine (Ile) to valine
. (Val) polymorphism in the CYPIAI gene is
to increase the enzymatic activity of the gene
product, as has been shown (22-25). The
result of having this GRF is an increased level
of metabolism, presumably leading to an
increased concentration of the ultimate car-
cinogen, given a particular exposure dose.
While this scenario may represent an over-
simplification, it can be seen that the effect of
the GRF is to quantitatively modify the effect
of the exposure term. This would be reflected
in a value greater than 0 for the term a. If &
is negative, the genetic factor should be pro-
tective. If the GRF has no effect on the expo-
sure (e.g., if the exposure is to an agent that is
not a substrate for the gene product), then 4,
and o = 0. If the GREF is absent, G = 0. In
either case, the risk is a function of exposure
only, with no contribution from the gene.

We can rewrite the regression model of
Equation 2 if there are data for the effects
of multiple () levels of exposure (doses):

&Y)=a+ b E +b,E.+b E

e

+ b, GE, + b(t g)ZGEl .....

(eg)l GE,, (5)

* Peg)n
where b, = 4, for exposure level E,, by, =
beg for exposure level E;, and G is the GRF.
Using this notation, E; is the dose and 4, is
defined as 0 and does not appear. For each
dose level (apart from the reference) from
Equation 4:

o= bylb; ©)
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If values of o are plotted against dose, several
outcomes are possible. If the slope of this
plot is positive, the gene—environment inter-
action follows a HEG effect; if the slope is
negative, a LEG effect is operative. If o <0
and 4, >0 at any particular dose level, the
genetic factor is protective at that level. Such
a scenario, whereby a particular genetic poly-
morphism may be a risk factor at one level of
exposure but protective at a different level, is
possible given the highly complex web of
interconnecting metabolic pathways that
usually operate in carcinogenic mechanisms.

The risk of disease or any other endpoint
is always a function of dose. Figure 1 illus-
trates a hypothetical dose—response relation-
ship for a type 2 GEI. At low—exposure levels
(area A in the figure), the curves with and
without the GRF diverge as a function of
increasing dose, showing an increased inter-
action (HEG effect). On the other hand, at
high doses, near a putative saturation value
(Area C), the curves converge toward satura-
tion, showing a decreased interaction (LEG
effect). The area in between, Area B, exhibits
a mixed pattern. This model may or may not
explain the observed LEG and HEG effects
in type 2 GEL

Since o is dependent on two odds ratios
(or rate ratios) and each ratio is a function of
the risk of disease at a particular dose, we can
assume that 0. is some function of dose. The
particular function is likely to vary for differ-
ent specific chemical exposures. If the func-
tion of o with respect to dose is known, we
can determine the form of the exposure—gene

Endpoint

Exposure level

Figure 1. Relationship between levels of exposure
and endpoint, showing three regions with different
exposure—gene effects. A, high exposure-gene
effect; B, mixed effect; C, low exposure—gene
effect; dotted line, genetic risk factor present;
solid line, genetic risk factor absent.

effect by the sign of the first derivative of o
with respect to exposure, 4a./dE. Although
several feasible dose—response models could
be used to determine the function of o, with
respect to exposure level, there is no clear rea-
son to choose any particular such model,
given the current understanding. Therefore,
rather than attempt to more precisely define
dou/dE, we have used hypothetical case—con-
trol studies representative of the various sce-
narios presented above.

Hypothetical data. We have created a
dataset using the EGRET package (Serc
and Cytel, Seattle, WA), including 5,000
cases and 5,000 controls, in which the fre-
quency of the genetic polymorphism
among the controls was arbitrarily defined
as 20% and the frequency of the levels of
exposure (no exposure, low, medium, high)
was arbitrarily set to 90%, 5%, 3%, and
2%, respectively.

Table 1. Hypothetical high exposure—gene effect «

Environmental Coefficients
Gene exposure OR b, b, o
- None 1.0 0
- + (low) 247 0.905
- + (medium) 3.39%4 1.222
- + (high) 4505 1.505
+ None 0.894 0 0.112
+ + (low) 2.709 0.905 0.997 1.102
+ + (medium) 6.675 1.222 1.898 1.553
+ + (high) 13.450 1.505 2,599 1.727
Abbreviations: OR: odds ratio; -, absent; +, present.
a=byglb,.
Table 2. Hypothetical low exposure—gene effect
Environmental Coefficients
Gene exposure OR b, bgg o
- None 1.0 0
- +(low) 2.029 0.708
- + (medium) 3.148 1.147
- + (high) 4,086 1.408
+ None 1.043 0 0.043
+ + (low) 4.402 0.708 1.482 2,094
+ + (medium) 5.289 1.147 1.666 1.453
+ + (high) 5.936 1.408 1.781 1.265

Abbreviations: OR: odds ratio; -, absent; +, present.
a=b,,/b,.
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To show the HEG effect, we set the
ORs of the three levels of exposure as 2.0,
3.0, and 4.0, the OR for the presence of the
genetic polymorphism as 1.0 (as from the
definition of GEI type 2), and the OR for
the presence of the gene and the three levels
of environmental exposure to 3.0, 6.0, and
12.0. To show the LEG response, we kept
the same ORs of the three levels of exposure
and for the presence of the genetic poly-
morphism, while the OR for the gene and
the three levels of environmental exposure
were set to 4.0, 5.0, and 6.0.

The results are presented in Tables 1 and
2. In Table 1 the value of o rose from 1.1 to
1.7, confirming a HEG effect; in Table 2, o
decreased from 2.1 to 1.3, as hypothesized in
the LEG effect.

Examples of type 2 GEI analyses.
Both types of exposure—gene effects have
been observed in several studies of genetic
susceptibility genes that include informa-
tion on exposure dose. Kihara et al. (20)
illustrate a high exposure—gene effect.
Table 3 shows the ORs for each category of
smoking exposure and genotype. The first
observation is that when the GREF is pre-
sent but there is no exposure, the OR is
equal to the reference (absence of both
gene and exposure); this defines a type 2
interaction. As the exposure level increases,
the risk of disease increases; the increase is
higher when the GRF is present for each
category of exposure level. Table 4 shows
the coefficients (b, 4,) obtained from the
multiple logistic regression model using the
SAS statistical package Genmod (SAS
Institute, Cary, NC). Also shown in Table
4 are the values for ., the interaction term,
which increase directly as a function of
dose. Thus, in this case there is a HEG
effect. Similar results can be obtained using
the data from other sources for this gene
and smoking-related lung cancer (19).

An example of a LEG effect is seen for
the CYP1A1 Ile to Val polymorphism in
exon 7 of the gene as a GRF for smoking-
induced lung cancer. The data from Nakachi
et al. (26), shown in Tables 3 and 4, show
that although the OR for cancer increases for
both genotypes as a function of dose, the
ratio of the risks decreases at higher doses.

The decrease of o with increasing exposures
illustrates this. We have also observed a low
exposure—gene effect for the association of
the African-American-specific polymorphism
in CYPI1A1I with lung adenocarcinoma in
smokers (/4), and other groups have report-
ed similar findings using adducts as an end-
point for NAT2 and for CYPIA2 [Landi et
al., personal communication; (15)].
Metabolic genes that modify cancer sus-
ceptibility play no role in carcinogenesis in
the absence of a relevant carcinogenic expo-
sure, assuming that endogenous substrates
are not involved. If they are, then the term
exposure must be modified to include such
agents. In the analysis of this GEI, defined
as type 2, it is important to consider the
exposure dose and two different forms of
exposure—gene interaction. We have shown
that the two forms of dose effect, the low
exposure—gene effect and the high expo-
sure—gene effect, may be analyzed and dis-
tinguished from each other and from other
types of effects (such as protection). In our
example, we have not addressed the ques-
tion of whether multiplicative versus addi-
tive models of interaction should be used
(27). For areas A and C of Figure 1, a mul-
tiplicative model was the hypothesis under-
lying our analysis, and we have observed
that use of an additive model has an effect
only on the magnitude of the coefficients
and o values but not on the direction of the
dose-dependent effect of the gene (not
shown). For Area B, this is not the case.
While at this point the biological mecha-
nisms responsible for the two types of expo-
sure effects are not known, it is possible to
speculate that these effects may simply be a
reflection of the shape of the dose-response
curves for individuals with and without the
GRE. If we assume that the effect of a genet-
ic susceprtibility factor is to increase the car-
cinogenic response at any particular dose
(e.g-» by causing increased enzymatic activity
or by altering the metabolic profile of an
agent), the dose-response curve will be shift-
ed to the left. An important assumption is
that the GRF has no effect on the maximal
response. At low dose levels, the presence of
the GRF will lead to an increase in the slope
of the dose—response curve, and subjects

Table 3. Odds ratios for lung cancer as a function of genotype and level of smoking exposure

Exposure
Genotype GRF None Low ‘ Medium High
GSTM1 + No ND 1.0 (ref) 1.1 1.1
GSTM1 - Yes ND 1.03 34 5.04
(null allele)
CYPIATlle No 1.0 (ref) 2.83 18.6 33.1
CYP1A1Val Yes 0.93 222 40.0 40.1

Abbreviations: GRF, genetic risk factor; GSTM1, glutathione S-transferase M1 gene; +, present; -, absent, CYP1A],
cytochrome P450 1A1 gene; lle, isoleucine; Val, valine; ND, not detectable; ref, reference. Data from Nakachi et al. (26)

and Kihara et al. (20).

Environmental Health Perspectives « Volume 106, Number 2, February 1998

with the GRF should respond more to high-
er doses of environmental agents than sub-
jects without the GRF, leading to the obser-
vation of a HEG effect. It may be safely
assumed that for any toxicological endpoint
(including carcinogenesis) a saturating dose
must always exist at which no further effect
can be seen with increasing dose. At doses
close to this maximum saturating level, the
dose-response curve for subjects with the
GREF will exhibit a decreased slope so that,
although the overall response in GRF posi-
tive individuals is higher then in GRF nega-
tives, the increase of the effect with increas-
ing dose is lower in the positives than in the
negatives. Therefore, subjects with the GRF
may exhibit disease (or high adduct levels,
etc.) at lower doses of environmental agent
than those without the GRF (the LEG
effect). This assumes that both exposure and
the GRF have a positive influence on the
endpoint. For situations in which either the
exposure (such as a therapeutic or preventive
agent) or the gene have a negative effect on
the endpoint, the reverse would be observed.
According to this model, genes such as
CYPIAI show low exposure—gene effect
with respect to lung cancer because the doses
of carcinogen present in cigarette smoke are
so high.

A low exposure—gene effect implies that
for GRF positive individuals, even a low car-
cinogen dose is highly risky; people carrying
the polymorphism are at higher risk of can-
cer in comparison to members of the general
population who are exposed to a carcinogen
such as tobacco smoke. Only complete
smoking cessation, as well as the avoidance
of other relevant exposures, can lead to can-
cer prevention in the susceptible group.

This analytical approach may be used
to determine whether a HEG or LEG
effect is operative. Type 2 GEI is the cor-
rect model for a particular study if the odds
ratio for the unexposed group with the
GRE is close to 1. However, when the data
are of insufficient statistical power to allow
for an accurate determination of this odds

Table 4. Coefficients from regression analysis for
gene—environment interaction

Exposure level Coefficient GSTM1  CYPIA1
1 be, 0535 104
2 be, 0.535 2.92
3 be, - 3.5
1 bleg), 0.66 2.06
2 Heg), 1.05 0.76
3 bleg), - 0.19
1 oy 123 1.98
2 oy 1.96 0.26
3 o, - 0.05

Abbreviations: GSTMY1, glutathione S-transferase gene,
CYPI1A1, cytochrome P450 1A1 gene. Data from Nakachi
et al. (26) and Kihara et al. (20).
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ratio, an alternative is to apply knowledge
regarding the mechanism of action of the
gene related to the exposure to decide
whether a type 2 interaction is logical with-
in a mechanistic context. Comparison of o
values between studies and meta-analysis of
o for specific gene—exposure combinations
may prove valuable in the future.

The detection of cancer genetic suscep-
tibility has profound positive public health
implications for cancer prevention. Detailed
study of the interactions of these genes with
environmental carcinogens holds the
promise of allowing the definition of sub-
sets of individuals of varying sensitivity and
responsiveness. While the entire issue of
genetic susceptibility differences among
people has important ethical, legal, and
political issues, increased knowledge in this
area (such as the specific form of expo-
sure—gene effect discussed here) will provide
benefits in helping to resolve these issues.
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